Hybrid ROV Ariane

Ifremer

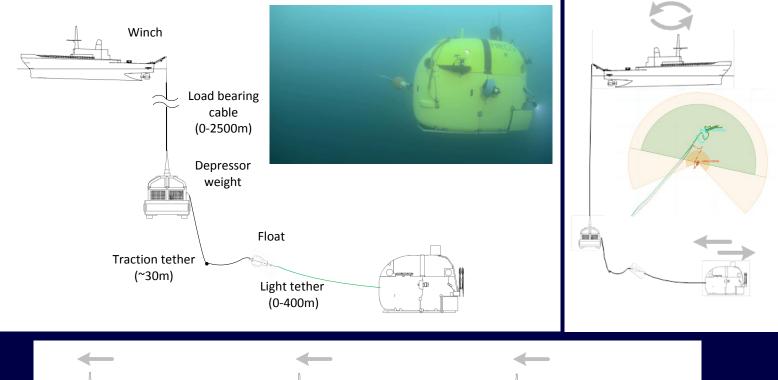
An innovative vehicle for coastal operation

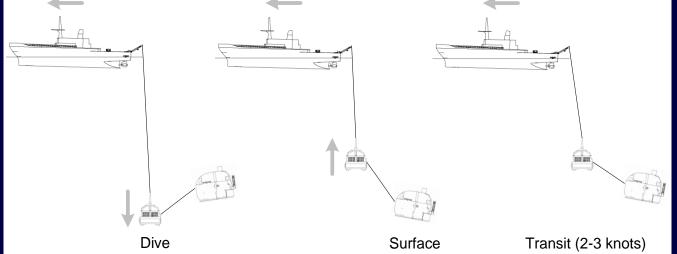
Ewen Raugel, Underwater Systems Unit

October 2017

HROV Ariane, an innovative vehicle for coastal operation

- An new hybrid ROV concept with a reversible fiber optic management allowing operation from a non Dynamic Positioning capable light vessel
 - → Reduced operational cost
 - → Easy and cost-effective access to ship time (opportunity vessels)




- Autonomy limited by onboard battery : daily work cycle
- Perform tasks on all sorts of seabed morphology, emphasis on canyons, cliffs and steep inclines, up to 2500m depth

2 payload configurations :

- *Exploration, intervention and sampling* configuration
- ✓ Optic and acoustic cartography configuration

HROV Ariane Concept

HROV Ariane : technical features

Features		
Weight	1,8 tons with	
	payload ~220kg	
Size	2800*1850*2130 mm ³	
Depth	Up to 2500m	
Speed	0-2 knot	
Autonomy	4 – 8h	

Ifremer

Equipments		
Sensors / navigation	Inertial unit(PHINS III) Depth sensor (Paro) vertical and frontal DVLs (600KHz) CTD (SBE49, Sea-Bird Electronics)	
Positioning	GAPS / USBL-box	
Communication	ROV : optical fiber AUV : acoustic modem	
Optical devices	Main Pan&tilt HD camera 3 auxiliary cameras (PAL) Scanning Sonar 360°/100m	
Energy	13kWh@150V Li-ion battery + 6kWh@48V Li-ion battery	
Safety devices	Drop weight (29.4 daN) Fiber cutter	
Thrusters	Main propulsion : 2 tilting thrusters 2 vertical auxiliary thrusters 2 lateral auxiliary thrusters 18 liter reversible ballast	

Exploration & sampling configuration

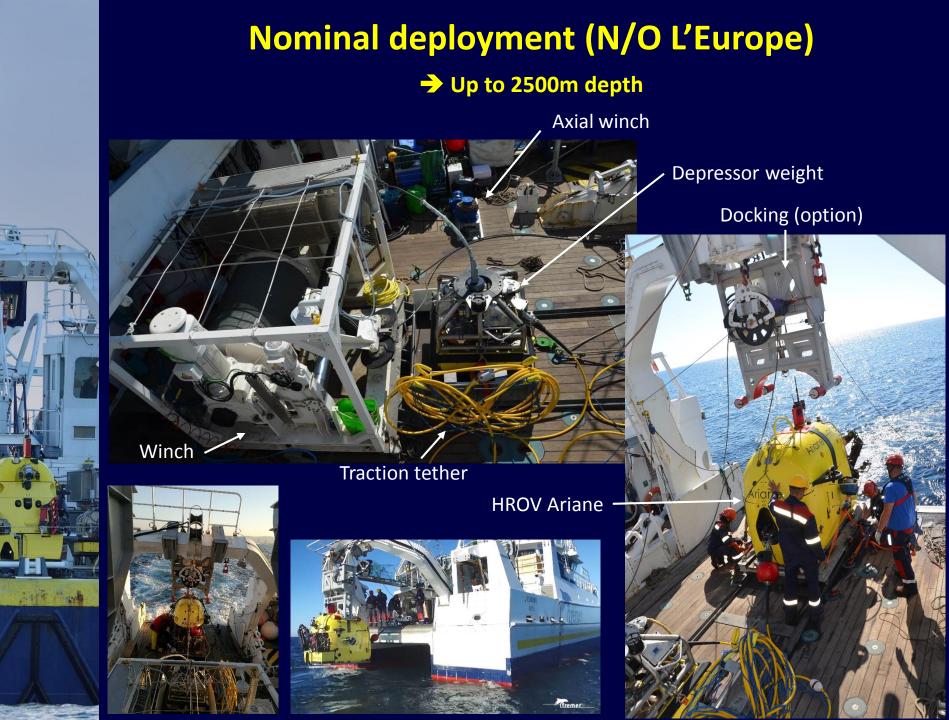
ane

Payloads :

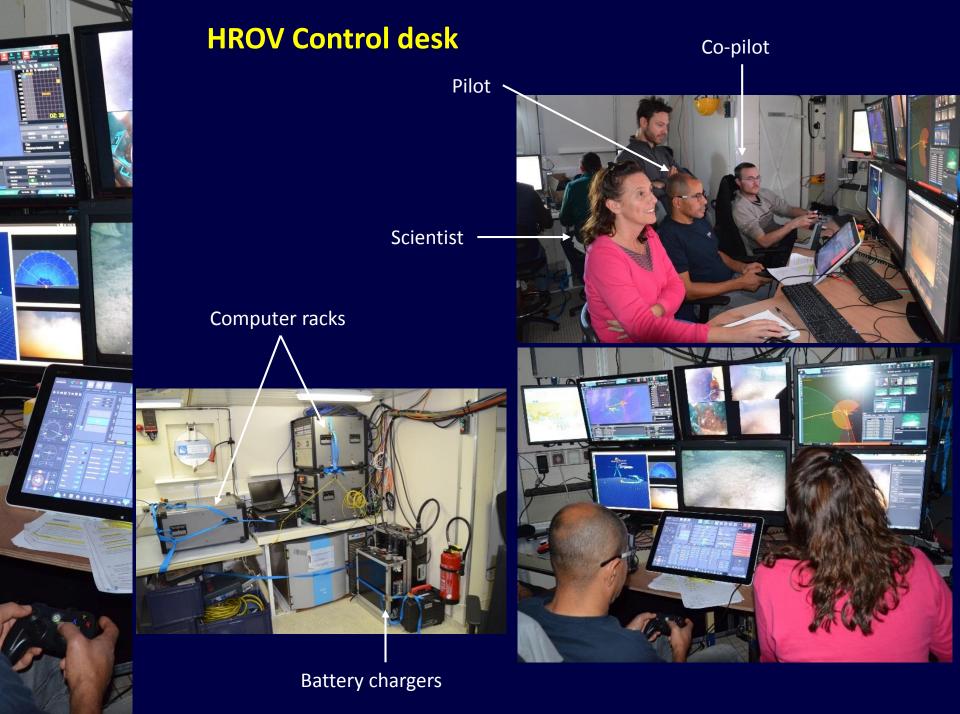
- ✓ 7 function electric manipulator (capacity : 25 daN)
- ✓ 5 function electric manipulator (capacity : 15daN)
- ✓ Sampling tools bay (105 litres)
- ✓ Faunal specimen sampler / sediment sampler
- ✓ Tilting digital still camera

Cartography configuration


Payloads :


- ✓ EM2040 multibeam echosonder (Kongsberg)
 - \rightarrow Adjustable angle of transducters : 0°/45°/90°
- ✓ Tilting digital still camera with associated flash

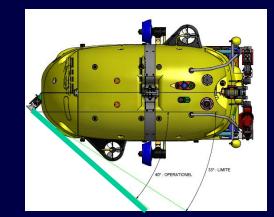
Sea tests planned in november 2017



Dive organization

- Check list : 2h
- HROV launch: 20min
- Diving (docked HROV) ~ 0,6m/s
- At working depth : weight ajustment, vessel stabilization, HROV undocking (light fiber deployment), approach and start of works
- Duration of works limited by onboard bzttery around 3 to 6 hours
- Surfacing (docked HROV) ~ 0,6m/s
- HROV recovery : 20 min

Dive exemple : Meust (2500m)		
10h35	HROV launch	
11h00	Start of diving	
12h30	HROV undocking	
12h45	Start of works on Meust site	
15h50	End of works (duration : 3h)	
16h00	Start of surfacing	
17h10	HROV recovery	
17h30	End of dive	

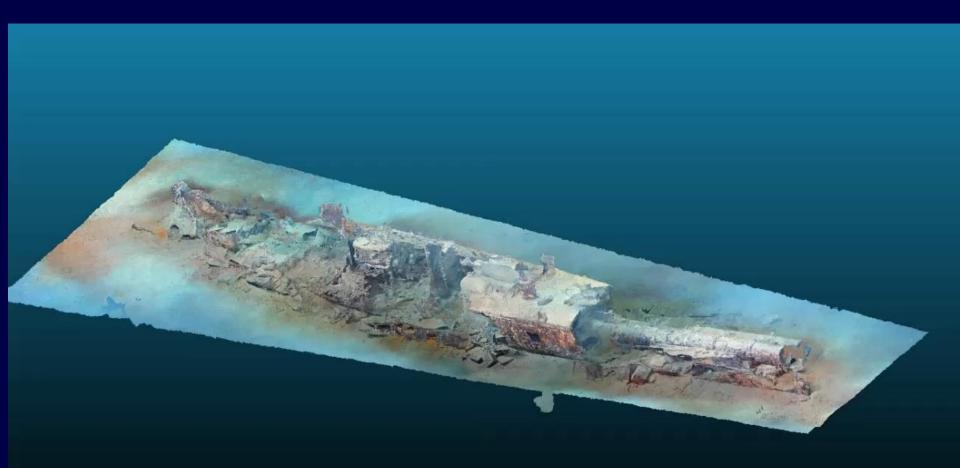


HROV manœuvrability

Speed		
Forward propulsion	1 m/s	
Reverse propulsion	0,3 m/s (0,4m/s in DOCKING mode)	
Ascent / descent propulsion	0,7 m/s	
Lateral propulsion	0,3 m/s	

- Ability to work in current, up to 0,5 knot without loss of manoeuvrability
- Perform tasks on all sorts of seabed morphology, emphasis on canyons, cliffs and steep inclines (with an minimal altitude of 1m)
- Ability of seafloor landing (for sampling tasks)
- Manoeuvrability constraints associated to fiber optic
 - ✓ Anchoring risk on seafloor with the fiber optic (or/and rupture of the optical link)
 - ✓ No turnaround

Inspection exemples


✤ 3m optical inspection :

1m optical inspection (0,2m/s)

3D geo-reconstruction from still photo survey Fully automated process from ~4000 images

